Tropical Diversity (2019) 1 (1): 12-25.
ISSN: 2596-2388
DOI: 10.5281/zenodo.11099673
RESEARCH ARTICLE
© 2019 The Authors
12
Database of the marine-derived aquatic biota of the Amazon Basin
Banco de dados da biota aquática de origem marinha da Bacia Amazônica
Mauro J. Cavalcanti1* https://orcid.org/0000-0003-2389-1902, Edinaldo Nelson dos Santos-Silva2
https://orcid.org/0000-0002-3340-4541, Luis José de Oliveira Geraldes Primeiro2 https://orcid.org/0000-
0002-3892-8969
1Ecoinformatics Studio, Caixa Postal 46521, CEP 20551-940, Rio de Janeiro, RJ.
2Laboratório de Plâncton, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André
Araújo, 2936, CEP 69060-000, Manaus, AM, Brasil.
*E-mail: maurobio@gmail.com
Received: December 16, 2018 / Accepted: February 18, 2019 / Published: February 19, 2019
Resumo Um banco de dados integrado,
desenvolvido com ferramentas de software livre, é
apresentado para catalogar e documentar a
diversidade biológica das espécies da biota
aquática de origem marinha da Bacia Amazônica,
com informações sobre nomenclatura, distribuição
geográfica, habitats, situação de conservação,
sequências genômicas e bibliografia relevante
para 225 espécies válidas de Porifera, Mollusca,
Arthropoda e Chordata. O banco de dados
completo encontra-se disponível para consulta em
http://mar.biotupe.org.
Palavras-Chave: Bacia Amazônica, bancos de dados,
informática para biodiversidade.
Abstract An integrated database, developed with
free software tools, is presented to catalog and
document the biological diversity of the marine-
derived species of the aquatic biota of the Amazon
Basin, with information on nomenclature,
geographic distribution, habitats, conservation
status, genomic sequences, and bibliography
relevant for 225 valid species of Porifera,
Mollusca, Arthropoda e Chordata. The complete
database is available for querying at
http://mar.biotupe.org.
Keywords: Amazon Basin, databases, biodiversity
informatics.
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
13
Introduction
The Amazon Basin has the highest known
aquatic biodiversity, larger than any other
comparable area on Earth (Webb, 1995). The
Amazon also presents a larger proportion of
marine-derived species, as aquatic mammals,
fishes, crustaceans, mollusks, bryozoans, and
sponges, than other major tropical river basins
(Géry, 1969; Roberts, 1972; Fink & Fink, 1979;
Lovejoy, 1997; Lovejoy et al., 1998). However,
little is yet known about the geographic
distribution patterns of those organisms, what
creates difficulties for the understanding of the
historical events responsible for the huge
differentiation observed in this fauna.
The understanding of the history of the
Amazon Basin at the end of Tertiary is not yet
well known (Sioli, 1964; Hoorn, 1993, 1994;
Hoorn et al., 1995, 2010; Räsänen et al., 1997;
Monsch, 1998). Many explanations were
suggested, for example, for the tidal sediments
found in the State of Acre. Some authors (eg.
Räsänen et al., 1995) presented the hypothesis
that these deposits would result from an inner
(epicontinental) sea in South American, the
Amazon Sea. Another hypothesis for the origin of
these sediments is that they could represent the
deltaic deposition of a great lake, the Amazon
Lake (Frailey et al. 1988; Marroig & Cerqueira,
1997) from Pleistocene-Holocene age, or the
Pebas Lake (Wesselingh, 2006; Wesselingh &
Salo, 2006; Wesselingh et al. 2002) from Miocene
age. The modifications in open environments
along the coast of this inner sea or lake would
facilitate the migration of aquatic animals,
promoting the integration of faunas during the
geological history of the South American
continent. Brooks et al. (1981), Nelson (1984),
Lovejoy (1996, 1997), Lovejoy et al. (1998,
2006), Lovejoy & Araújo (2000), Lovejoy &
Collette (2001), Boeger & Kritsky (2002), Cooke
et al. (2012), and Bloom & Lovejoy (2017)
presented studies on the phylogeny and
biogeography of freshwater stingrays
(Potamotrygonidae), sardines (Engraulidae),
needlefishes (Belonidae), and drums (Sciaenidae)
in South America, suggesting that the marine
incursions in Amazonia, during the Miocene,
were crucial to the evolution ot these groups. With
regard to speciation patterns of freshwater fishes,
Lowe-McConnell (1969), Lundberg (1998),
Lundberg et al. (1998), and Hubert & Renno
(2006) suggested that large tropical river systems
like the Amazon would allow that some species
developed geographic isolation in the headwaters
of tributaries, postulating that tectonic movements
could lead to alterations in the ecological
conditions of the rivers (Hoorn et al., 1995;
Räsänen et al., 1997; Albert et al, 2006), which in
turn would propitiate the development of physical,
chemical, or biotic barriers among the populations
and allowing the occurrence of geographic
isolation within a hydrographic system. Hamilton
et al. (2001) and Domning (1982) presented
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
14
similar inferences in relation to freshwater
cetaceans and sirenians, respectively.
A huge volume of data is available today
in the major biological collections of Amazonia
(Magalhães et al., 2001; Magalhães & Bonaldo,
2003) and in large online biodiversity databases
(Constable et al., 2010; Edwards et al., 2000;
Telenius, 2011). If adequately integrated and
analyzed by means of data-mining techniques and
statistical methods that make possible to detect
patterns and to identify factors and trends, these
data can provide valuable subsidies to the
conservation and sustainable use of the biological
resources represented by this biota. However, a
major challenge to achieving this goal is that,
though easily acessible from different sources,
these data are not available as integrated subsets
for specialized target groups as the marine-
derived aquatic biota of the Amazon Basin.
The goal of this study was to implement a
tool for cataloging and documenting the
biological diversity of the marine-derived species
of the aquatic biota of the Amazon Basin which
could provide such an integrated database with
information on nomenclature, geographic
distribution, habitats, conservation status,
genomic sequences, and bibliography relevant for
each species, compiled from several different
sources.
Materials and Methods
For building the database, we used a list
of species of selected taxonomic groups (sponges,
mollusks, crustaceans, fishes, and aquatic
mammals) representative of the marine-derived
aquatic biota of the Amazon Basin, compiled
from literature data, from the biological
collections of the major Amazonian research
institutions, and from those available in online
databases. This list was previously checked
against the Catalogue of Life
(www.catalogueoflife.org) taxonomic database to
identify and correct possible synonyms and other
nomenclatural problems.
The system was entirely based on open
source, freely available software tools. The
database was implemented using the database
management system MySQL (www.mysql.com),
on the basis of the generic scheme for biodiversity
databases ACACIA
(sites.google.com/site/acaciadb). A specialized
software tool developed in the Python
programming language (www.python.org) was
used to populate the database tables from several
sources available on the Internet which provide
interfaces to application programs, including five
data classes: (1) nomenclature and literature data:
CoL (www.catalogueoflife.org), FishBase
(www.fishbase.org), and WoRMS
(www.marinspecies.org); (2) genomic sequence
data: Genbank/NCBI
(www.ncbi.nlm.nih.gov/genbank); (3) geographic
distribution data: Global Biodiversity Information
Facility (www.gbif.org), VertNet
(www.vertnet.org), and iDigBio
(www.idigbio.org); (4) conservation status data:
IUCN Red List (www.iucnredlist.org); (5) free
text notes: Wikipedia (en.wikipedia.org).
Searches and analyses of these data can be
performed by means of a user-friendly Web
interface written in the language PHP
(www.php.net), with simple menus for browsing
and querying the database and generating
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
15
statistical reports (Fig. 1). Distribution maps are
automatically generated by the OpenLayers
(www.openlayers.org) integrated tool, on the
basis of the georeferenced occurrence records
available in the database (Fig. 2). Results of all
database queries can be exported to files in Excel,
CSV or KML standard formats for use with other
software as GIS and statistical packages, for more
elaborate display and further analysis.
Figure 1 Database browser, displaying the results of a simple query.
Figure 2 Distribution map for a selected species.
Results and Discussion
Data were obtained for 225 valid species
of marine-derived taxonomic groups, included in
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
16
4 phyla, 6 classes, 19 orders, 29 families, and 74
genera (Table 1). These species present 621
names, with 317 synonyms. Chordata (58,7%) is
the phylum of the highest species frequency,
followed by Arthropoda (22,17%), Porifera
(18,7%), and Mollusca (0,43%). The most
frequent classes are Osteichthyes (43,48%),
Crustacea (22,17%), Demospongiae (18,7%), and
Chondrichthyes (12,17%). Decapoda (22,7%),
Haplosclerida (18,7%), Perciformes (18,7%),
Rajiformes (10,87%), and Clupeiformes (10%)
are the orders with the highest species frequency,
whereas Trichodactylidae (19,13%),
Potamotrygonidae (10,87%), Sciaenidae (8,7%),
and Spongillidae (7,39%) are the most frequent
families.
Table 1 Checklist of the marine-derived aquatic biota of the Amazon Basin
PORIFERA
DEMOSPONGIAE
HAPLOSCLERIDA
Incertae Sedis
Acanthotylotra alvarengai Volkmer-Ribeiro et al., 2009
Balliviaspongia wirrmani Boury-Esnault & Volkmer, 1992
Metaniidae
Acalle recurvata (Bowerbank, 1863)
Drulia batesii (Bowerbank, 1863)
Drulia brownii (Bowerbank, 1863)
Drulia conifera Bonetto & Ezcurra de Drago, 1973
Drulia cristata (Weltner, 1895)
Drulia ctenosclera Volkmer & Mothes, 1981
Drulia geayi (Gravier, 1899)
Drulia uruguayensis Bonetto & Ezcurra de Drago, 1969
Metania fittkaui Volkmer-Ribeiro, 1979
Metania kiliani Volkmer-Ribeiro & Costa, 1992
Metania melloleitaoi (Machado, 1948)
Metania reticulata (Bowerbank, 1863)
Metania spinata (Carter, 1881)
Metania subtilis Volkmer-Ribeiro, 1979
Potamolepidae
Oncosclera atrata (Bonetto & Ezcurra de Drago, 1970)
Oncosclera intermedia Bonetto & Ezcurra de Drago, 1973
Oncosclera jewelli (Volkmer, 1963)
Oncosclera navicella (Carter, 1881)
Oncosclera petricola Bonetto & Ezcurra de Drago, 1967
Oncosclera ponsi (Bonetto & Ezcurra de Drago, 1968)
Oncosclera schubarti (Bonetto & Ezcurra de Drago, 1967)
Oncosclera spinifera (Bonetto & Ezcurra de Drago, 1973)
Oncosclera stolonifera Bonetto & Ezcurra de Drago, 1973
Oncosclera tonollii (Bonetto & Ezcurra de Drago, 1968)
Spongillidae
Corvoheteromeyenia australis (Bonetto & Ezcurra de Drago, 1966)
Corvoheteromeyenia heterosclera (Ezcurra de Drago, 1974)
Pottsiela pesae Volkmer-Ribeiro et al., 2010
Pottsiela spoliata (Volkmer-Ribeiro & Maciel, 1983)
Saturnospongilla carvalhoi Vokmer-Ribeiro, 1976
Trochospongilla amazonica (Weltner, 1895)
Trochospongilla delicata Bonetto & Ezcurra de Drago, 1967
Trochospongilla gregaria (Bowerbank, 1863)
Trochospongilla lanzamirandai Bonetto & Ezcurra de Drago, 1964
Trochospongilla minuta (Potts, 1887)
Trochospongilla paulula (Bowerbank, 1863)
Trochospongilla repens (Hinde, 1888)
Trochospongilla tenuissima Bonetto & Ezcurra de Drago, 1970
Trochospongilla variabilis Bonetto & Ezcurra de Drago, 1973
Uruguayella macandrewi (Hinde, 1888)
Uruguayella pygmaea (Hinde, 1888)
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
17
Uruguayella ringueleti (Bonetto & Ezcurra de Drago, 1962)
MOLLUSCA
BIVALVIA
PHOLADOMYOIDA
Lyonsiidae
Anticorbula fluviatilis (H. Adams, 1860)
ARTHROPODA
CRUSTACEA
DECAPODA
Pseudothelphusidae
Brasiliothelphusa dardanelosensis Magalhaes & Turkay, 2010
Brasiliothelphusa tapajoense Magalhaes & Turkay, 1986
Fredius fittkaui (Bott, 1967)
Kingsleya gustavoi Magalhaes, 2004
Kingsleya junki Magalhaes, 2003
Kingsleya siolii Bott, 1967
Kingsleya ytupora Magalhaes, 1986
Sergestidae
Acetes marinus Omori, 1975
Acetes paraguayensis Hansen, 1919
Trichodactylidae
Bottiella cucutensis (Pretzmann, 1968)
Bottiella medemi (Smalley & Rodriguez, 1972)
Bottiella niceforei (Schmitt & Pretzmann, 1968)
Dilocarcinus pagei Stimpson, 1861
Dilocarcinus septemdentatus (Herbst, 1783)
Dilocarcinus truncatus Rodriguez, 1992
Fosteria venezuelensis (Rathbun, 1905)
Fredilocarcinus apyratii Magalhaes & Turkay, 1996
Fredilocarcinus musmuschiae (Pretzmann & Mayta, 1980)
Fredilocarcinus raddai (Pretzmann, 1979)
Fredius denticulatus (H. Milne-Edwards, 1853)
Fredius reflexifrons (Ortmann, 1897)
Goyazana castelnaui (H. Milne Edwards, 1853)
Moreirocarcinus chacei (Pretzmann, 1968)
Moreirocarcinus emarginatus (H. Milne-Edwards, 1853)
Moreirocarcinus laevifrons (Moreira, 1901)
Poppiana argentiniana (Rathbun, 1905)
Poppiana bulbifer Rodriguez, 1992
Poppiana dentata (Randall, 1840)
Rotundovaldivia latidens (A. Milne-Edwards, 1869)
Sylviocarcinus australis Magalhaes & Turkay, 1996
Sylviocarcinus devillei H. Milne-Edwards, 1853
Sylviocarcinus maldonadoensis (Pretzmann, 1978)
Sylviocarcinus pictus (H. Milne-Edwards, 1853)
Sylviocarcinus piriformis (Pretzmann, 1968)
Trichodactylus borellianus Nobili, 1896
Trichodactylus crassus A. Milne-Edwards, 1869
Trichodactylus dentatus H. Milne Edwards, 1853
Trichodactylus ehrhardti Bott, 1969
Trichodactylus faxoni Rathbun, 1905
Trichodactylus fluviatilis Latreille, 1928
Trichodactylus kensleyi Rodriguez, 1992
Trichodactylus panoplus (von Martens, 1869)
Trichodactylus parvus Moreira, 1912
Trichodactylus petropolitanus (Goldi, 1886)
Trichodactylus quinquedentatus Rathbun, 1893
Valdivia camerani (Nobili, 1896)
Valdivia haraldi Bott, 1969
Valdivia novemdentata (Pretzmann, 1968)
Valdivia serrata harttii (Rathbun, 1905)
Valdivia serrata serrata White, 1847
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
18
Zilchiopsis collastinensis (Pretzmann, 1968)
Zilchiopsis cryptodus (Ortmann, 1983)
Zilchiopsis oronensis (Pretzmann, 1968)
CHORDATA
CHONDRICHTHYES
CARCHARHINIFORMES
Carcharhinidae
Carcharhinus leucas (Muller & Henle, 1839)
PRISTIFORMES
Pristidae
Pristis pectinata Latham, 1794
Pristis pristis (Linnaeus, 1758)
RAJIFORMES
Potamotrygonidae
Heliotrygon gomesi Carvalho & Lovejoy, 2011
Heliotrygon rosai Carvalho & Lovejoy, 2011
Paratrygon ajereba (Muller & Henle, 1841)
Plesiotrygon iwamae Rosa, Castello & Thorson, 1987
Plesiotrygon nana Carvalho & Ragno, 2011
Potamotrygon boesemani Rosa, Carvalho & Almeida Wanderley, 2008
Potamotrygon brachyura (Gunther, 1880)
Potamotrygon constellata (Vaillant, 1880)
Potamotrygon falkneri Castex & Maciel, 1963
Potamotrygon henlei (Castelnau, 1855)
Potamotrygon humerosa Garman, 1913
Potamotrygon hystrix (Muller & Henle, 1841)
Potamotrygon leopoldi Castex & Castello, 1970
Potamotrygon magdalenae (Dumeril, 1865)
Potamotrygon marinae Deynat, 2006
Potamotrygon motoro (Muller & Henle, 1841)
Potamotrygon ocellata (Engelhardt, 1912)
Potamotrygon orbignyi (Castelnau, 1855)
Potamotrygon schoederi Fernandez-Yepez, 1958
Potamotrygon schuhmacheri Castex, 1964
Potamotrygon scobina Garman, 1913
Potamotrygon signata Garman, 1913
Potamotrygon tatianae Silva & Carvalho, 2011
Potamotrygon tigrina Carvalho, Sabaj Perez & Lovejoy, 2011
Potamotrygon yepezi Castex & Castello, 1970
OSTEICHTHYES
ANGUILIFORMES
Ophichthidae
Stictorhinus potamius Bohlke & McCosker, 1975
ATHERINIFORMES
Belonidae
Belonion apodion Collette, 1966
Belonion dibranchodon Collette, 1966
Potamorrhaphis eigenmanni Miranda Ribeiro, 1915
Potamorrhaphis guianensis (Jardine, 1843)
Potamorrhaphis petersi Collette, 1974
Pseudotylosurus angusticeps (Gunther, 1866)
Pseudotylosurus microps (Gunther, 1866)
BATRACHOIDIFORMES
Batrachoididae
Potamobatrachus trispinosus Collette, 1995
Thalassophryne amazonica Steindachner, 1876
BELONIFORMES
Hemiramphidae
Hyporhamphus brederi (Fernandez-Yepez, 1948)
CLUPEIFORMES
Clupeidae
Rhinosardinia amazonica (Steindachner, 1879)
Rhinosardinia bahiensis (Steindachner, 1879)
Engraulidae
Amazonsprattus scintilla Roberts, 1984
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
19
Anchovia surinamensis (Gunther, 1868)
Anchoviella alleni (Myers, 1940)
Anchoviella carrikeri Fowler, 1940
Anchoviella guianensis (Eigenmann, 1912)
Anchoviella jamesi (Jordan & Seale, 1926)
Anchoviella juruasanga Loeb, 2012
Anchoviella manamensis Cervigon, 1982
Anchoviella nattereri (Steindachner, 1879)
Anchoviella perezi Cervigon, 1987
Anchoviella vaillanti (Steindachner, 1908)
Jurengraulis juruensis (Boulenger, 1898)
Lycengraulis batesii (Gunther, 1868)
Lycengraulis limnichthys Schultz, 1949
Pterengraulis atherinoides (Linnaeus, 1766)
Pristigasteridae
Ilisha amazonica (Miranda Ribeiro, 1920)
Pellona altamazonica Cope, 1872
Pellona castelnaeana Valenciennes, 1847
Pellona flavipinnis (Valenciennes, 1837)
Pristigaster cayana Cuvier, 1829
Pristigaster whiteheadi Menezes & de Pinna, 2000
ELOPIFORMES
Megalopidae
Megalops atlanticus Valenciennes, 1847
GOBIESOCIFORMES
Gobiesocidae
Gobiesox juradoensis Fowler, 1944
Gobiesox multitentaculus (Briggs, 1951)
Gobiesox nudus (Linnaeus, 1758)
MUGILIFORMES
Mugilidae
Agonostomus monticola (Bancroft, 1834)
Mugil trichodon Poey, 1875
PERCIFORMES
Eleotridae
Dormitator lophocephalus Hoedeman, 1951
Dormitator maculatus (Bloch, 1792)
Eleotris amblyopsis (Cope, 1871)
Eleotris picta Kner, 1863
Eleotris pisonis (Gmelin, 1789)
Microphilypnus acangaquara Caires & Figueiredo, 2011
Microphilypnus amazonicus Myers, 1927
Microphilypnus macrostoma Myers, 1927
Microphilypnus ternetzi Myers, 1927
Gobiidae
Awaous banana (Valenciennes, 1837)
Awaous flavus (Valenciennes, 1837)
Awaous tajasica (Lichtenstein, 1822)
Gobioides broussonnetii Lacepede, 1800
Gobioides grahamae Palmer & Wheeler, 1955
Gobioides peruanus (Steindachner, 1880)
Sicydium hildebrandi Eigenmann, 1918
Sicydium punctatum Perugia, 1896
Sicydium rosenbergii (Boulenger, 1899)
Percichthyidae
Percichthys chilensis Girard, 1855
Percichthys colhuapiensis MacDonagh, 1955
Percichthys laevis (Jenyns, 1840)
Percichthys melanops Girard, 1855
Percichthys trucha (Valenciennes, 1833)
Sciaenidae
Pachypops fourcroi (Lacepede, 1802)
Pachypops pigmaeus Casatti, 2002
Pachypops trifilis (Muller & Troschel, 1848)
Pachyurus adspersus Steindachner, 1879
Pachyurus bonariensis Steindachner, 1879
Pachyurus calhamazon Casatti, 2001
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
20
Pachyurus francisci (Cuvier, 1830)
Pachyurus gabrielensis Casatti, 2001
Pachyurus junki Soares & Casatti, 2000
Pachyurus paucirastrus Aguilera, 1983
Pachyurus schomburgkii Gunther, 1860
Pachyurus squamipennis Agassiz, 1831
Pachyurus stewarti Casatti & Chao, 2002
Petilipinnis grunniens (Schomburgk, 1843)
Plagioscion auratus (Castelnau, 1855)
Plagioscion casattii Aguilera & Rodrigues de Aguilera, 2001
Plagioscion montei Soares & Casatti, 2000
Plagioscion squamosissimus (Heckel, 1840)
Plagioscion surinamensis (Bleeker, 1873)
Plagioscion ternetzi Boulenger, 1895
PLEURONECTIFORMES
Achiridae
Achirus novoae Cervigon, 1982
Apionichthys dumerili Kaup, 1858
Apionichthys finis (Eigenmann, 1912)
Apionichthys menezesi Ramos, 2003
Apionichthys nattereri (Steindachner, 1876)
Apionichthys rosai Ramos, 2003
Apionichthys sauli Ramos, 2003
Apionichthys seripierriae Ramos, 2003
Catathyridium garmani (Jordan, 1889)
Catathyridium grandirivi (Chabanaud, 1928)
Catathyridium jenynsii (Gunther, 1862)
Catathyridium lorentzii (Weyenbergh, 1877)
Hypoclinemus mentalis (Gunther, 1862)
Pnictes asphyxiatus (Jordan, 1889)
TETRAODONTIFORMES
Tetraodontidae
Colomesus asellus (Muller & Troschel, 1849)
Colomesus psittacus (Bloch & Schneider, 1801)
Colomesus tocantinensis Amaral et. al, 2013
MAMMALIA
CETACEA
Delphinidae
Sotalia fluviatilis (Gervais & Deville,1853)
Sotalia guianensis (P.-J. van Beneden, 1864)
Iniidae
Inia araguaiensis Hrbek et al., 2014
Inia geoffrensis boliviensis d'Orbigny, 1834
Inia geoffrensis geoffrensis de Blainville,1817
Inia geoffrensis humboldtiana Pilleri and Gihr, 1978
SIRENIA
Trichechidae
Trichechus inunguis Natterer, 1883
As of the geographic distribution of the species in
the Amazon Basin, there are 5,689 occurrence
records from 2,570 localities. Potamorrhaphis
guianensis with 411 records (7,22%), Percichthys
trucha with 351 records (6,17%), Plagioscion
squamosissimus with 347 records (6,1%),
Colomesus asellus with 241 records (4,24%), and
Amazonsprattus scintilla with 203 records
(3,57%) are the species with the highest number
of records.
There are 2,502 nucleotide sequences and
1,507 protein sequences for 69 species (30% of
the total) in the database, of which 18 species
present more then 40 sequences and the remaining
present from 2 to 36 sequences.
With relation to conservation status,
following the criteria of IUCN, 3 species
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
21
(Bottiella cucutensis, Bottiella medemi, and
Trichechus inunguis) are included in category
Vulnerable (VU), 2 (Pristis pectinata and Pristis
pristis) in category Critically endangered (CR), 2
(Carcharhinus leucas and Potamotrygon
magdalenae) in category Near threatened (NT)
and 1 (Trichodactylus crassus) in category
Endangered (EN), with 42 species included in
category Least concern (LC), 29 in category
Deficient data (DD) and 151 in category Not
evaluated (NE). No species is included in the
categories Extinct in the wild (EW) or Extinct
(EX).
Caution is required in interpreting these
figures on the conservation status of marine-
derived species from the Amazon Basin, as
there are no global estimates in the literature on
how much of this biota is still unknown and not
properly documented. Thus, the two species of
Pristis listed as “Critically endangered” are not
endemic of the Amazon Basin and, in fact, are
not obligate freshwater species, despite their
ability to live in freshwater habitats (Thorson,
1974); the same applies to Carcharhinus
leucas, one of the species listed as “Near
threatened” (Thorson, 1972). In both cases, the
conservation status applies to these species as a
whole and does not imply that they are
endangered or threatened in the Amazon Basin:
in this regard, Fernandez-Carvalho et al. (2014)
found that the Amazon estuary harbors the
largest remaining population of P. pristis in the
Atlantic. On the other hand, Trichodactylus
crassus, the only species listed as
“Endangered”, comprises a sixth of the
freshwater crabs of the world facing a high risk
of extinction (
Cumberlidge et al., 2009
), but its
geographic distribution is restricted to localities
of the Atlantic Forest and
Caatinga (Almeida et
al., 2008; Souza-Carvalho, 2013), therefore
outside the Amazon Basin. What should really be
emphasized is the very large number of species
(151 out of 225 species in the database, or 67% of
the total) that have not even had their
conservation status evaluated.
The complete database of the marine-
derived aquatic biota of the Amazon Basin is
available for querying at http://mar.biotupe.org.
Conclusions
A major result of this study was the
development and public availability of a
comprehensive database on the marine-derived
aquatic biota of the Amazon Basin. Currently, this
database is the only such initiative even
implemented in the world, consolidating the
available data on this biota all over its geographic
range from many distributed sources. Besides, the
free, generic, and flexible information technology
developed for implementing the database (the
ACACIA scheme for taxonomic databases and
associated software) can be used for the
development of such integrated biodiversity
databases targeting other biotas and taxonomic
groups of interest, as for example, the marine-
derived aquatic biotas of the Congo/Zambezi and
Ganges/Mekong/Yangtze river basins.
Acknowledgements
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
22
We thank Debora Drucker, Paulo Roberto
Duarte Lopes, and Paulo Gorgosinho for
reviewing the original manuscript and providing
constructive criticisms and valuable suggestions.
The authors remain responsible for any errors and
omissions.
References
Albert, J. S., Lovejoy, N. R. & Crampton, W. G.
R. 2006. Miocene tectonism and the
separation of cis- and trans-Andean river
basins: evidence from Neotropical fishes.
Journal of South American Earth Sciences
21: 14-27.
Bloom, D. D. & Lovejoy, N. R. 2017. On the
origins of marine-derived freshwater fishes
in South America. Journal of Biogeography
44: 1927-1938.
Boeger, W. A. & Kritsky, D. C. 2002. Parasites,
fossils and geologic history: historical
biogeography of the South American
freshwater croakers, Plagioscion spp.
(Teleostei, Sciaenidae). Zoologica Scripta 32:
3-11.
Brooks, D. R., Thorson, T. B. & Mayes, M. A.
1981. Freshwater stingrays
(Potamotrygonidae) and their helminth
parasites: testing hypotheses of evolution and
coevolution. In: Advances in Cladistics.
Proceedings of the First Meeting of the Willi
Henning Society. Funk, V. A. & Brooks, D.
R. (eds). New York Botanical Garden, New
York, pp. 147-175.
Brooks, D. R. 1995. Neotropical freshwater
stingrays and their parasites: a tale of an
ocean and a river long ago. Journal of
Aquariculture and Aquatic Sciences 7: 52-61.
Constable, H., Guralnick, R., Wieczorek, J.,
Spencer, C., Peterson, A.T. 2010. VertNet: a
new model for biodiversity data sharing. PloS
Biology 8: e1000309.
Cooke, G.; Chao, N. & Beheregaray, L. 2012.
Marine incursions, cryptic species and
ecological diversification in Amazonia: the
biogeographic history of the croaker genus
Plagioscion (Sciaenidae). Journal of
Biogeography 39: 724-738.
Costa, J.B.S.; Bemerguy, R.L.; Hasui, Y.; Borges,
M.S.; Ferreira Júnior, C.R.P.; Bezerra,
P.E.L.; Costa, M.L. & Fernandes, J.M.G.
1996. Neotectônica da região amazônica:
aspectos tectônicos, geomorfológicos e
deposicionais. Geonomos 4: 23-44.
Domning, D.P 1982. Evolution of manatees: a
speculative history. Journal of Paleontology
56: 599-619.
Edwards, J. L., Lane, M. A. & Nielsen, E. S.
2000. Interoperability of biodiversity
databases: Biodiversity information on every
desktop. Science 289: 2312-2314.
Fernandez-Carvalho, J., Imhoff, J.L., Faria, V.V.,
Carlson, J.K. & Burgess, G.H. 2014. Status
and the potential for extinction of the
largetooth sawfish Pristis pristis in the
Atlantic Ocean. Aquatic Conservation:
Marine and Freshwater Ecosystems 24: 478-
497.
Fink, W. L. & Fink, S. V. 1979. Central
Amazonia and its fishes. Comparative
Biochemistry and Physiology 62A: 13-29.
Frailey, C. D., Lavina, E. L., Rancy, A. & Souza
Filho, J. P. 1988. A proposed
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
23
Pleistocene/Holocene lake in the Amazon
basin and its significance to Amazonian
geology and biogeography. Acta Amazonica
18: 119-143.
Géry, J. 1969. The freshwater fishes of South
America. In: Biogeography and Ecology in
South America, Vol.2. Fittkau, E. J. et al.
(eds.). W. Junk, The Hague, pp. 828-848.
Hamilton, H., Caballero, S., Collins, A. G. &
Brownell, Jr., R. L. 2001. Evolution of river
dolphins. Proceedings of the Royal Society
London, Biological Sciences 268: 549-556.
Hoorn, C. 1993. Marine incursions and the
influence of Andean tectonics on the Miocene
depositional history of northwestern
Amazonia: results of a palynostratigraphic
study. Paleogeography, Paleoclimatology,
Paleoecology 105: 267-309.
Hoorn, C. 1994. An environmental reconstruction
of the paleo-Amazon River system (Middle-
Late Miocene, NW Amazonia).
Paleogeography, Paleoclimatology,
Paleoecology 112: 187-238.
Hoorn, C. 2006. Mangrove forests and marine
incursions in Neogene Amazonia (Lower
Apaporis River, Colombia). Palaios 21: 197-
209
Hoorn, C., Guerrero, J., Sarmiento, G. & Lorente,
M. 1995. Andean tectonics as a cause for
changing drainage patterns in Miocene
northern South America. Geology 23: 237-
240.
Hoorn, C.; Wesselingh, F.; ter Steege, H.;
Bermudez, M.; Mora, A.; Sevink, J.;
Sanmartín, I.; Sanchez-Meseguer, A.;
Anderson, C.; Figueiredo, J.; Jaramillo, C.;
Riff, D.; Negri, F. R.; Hooghiemstra, H.;
Lundberg, J.; Stadler, T.; Sarkinen, T. &
Antonelli, A. 2010. Amazonia through time:
Andean uplift, climate change, landscape
evolution, and biodiversity. Science 330:
927-931.
Hubert, N. & Renno, J.-F. 2006. Historical
biogeography of South American freshwater
fishes. Journal of Biogeography 33: 1414-
1436.
Latrubesse, E. M., Silva, S. A. F., Cozzuol, M. &
Absy, M. L. 2007. Late Miocene continental
sedimentation in southwestern Amazonia and
its regional significance: biotic and
geological evidence. Journal of South
American Earth Sciences 23: 61-80.
Lovejoy, N. R. 1996. Systematics of myliobatoid
elasmobranchs: with emphasis on the
phylogeny and historical biogeography of
neotropical freshwater stingrays
(Potamotrygonidae: Rajiformes). Zoological
Journal of the Linnean Society 117: 207-257.
Lovejoy, N. R. 1997. Stingrays, parasites, and
neotropical biogeography: a closer look at
Brooks et al.’s hypotheses concerning the
origins of neotropical freshwater rays
(Potamotrygonidae). Systematic Biology 46:
218-230.
Lovejoy, N. R., Bermingham, E. & Martin, A. P.
1998. Marine incursion into South America.
Nature 396: 421-422.
Lovejoy, N. R. & Araújo, M. L. G. 2000.
Molecular systematics, biogeography and
population structure of Neotropical
freshwater needlefishes of the genus
Potamorrhaphis. Molecular Ecology 9: 259-
268.
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
24
Lovejoy, N. R. & Collette, B. B. 2001.
Phylogenetic relationships of New World
needlefishes (Teleostei: Belonidae) and the
biogeography of transitions between marine
and freshwater habitats. Copeia 2001: 324-
338.
Lovejoy, N. R., Albert, J. S. & Crampton, W. G.
R. 2006. Miocene marine incursions and
marine/freshwater transitions: evidence from
Neotropical fishes. Journal of South
American Earth Sciences 21: 5-13.
Lowe-McConnell, R. H. 1969. Speciation in
tropical freshwater fishes. Biological Journal
of the Linnean Society 1: 51-75.
Lundberg, J. G. 1998. The temporal context for
the diversification of neotropical fishes. In:
Phylogeny and Classification of Neotropical
Fishes. Malabarba, L. R., Reis, R. E., Vari, R.
P., Lucena, Z. M. S. & Lucena, C. A. S.
(eds). EDIPUCRS, Porto Alegre, pp. 48-68.
Lundberg, J. G., Marshall, L. G., Guerrero, J.,
Horton, B., Malabarba, M. C. S. L. &
Wesselingh, F. 1998. The stage for
neotropical fish diversification: a history of
tropical South American rivers. In:
Phylogeny and Classification of Neotropical
Fishes. Malabarba, L. R., Reis, R. E., Vari, R.
P., Lucena, Z. M. S. & Lucena, C. A. S.
(eds). EDIPUCRS, Porto Alegre, pp. 13-48.
Magalhães, C., Campos dos Santos, J. L. &
Salem, J. I. 2001. Automação de coleções
biológicas e informações sobre a
biodiversidade da Amazônia. Parcerias
Estratégicas 12: 294-312.
Magalhães, C. & Bonaldo, A. B. 2003. Coleções
biológicas da Amazônia: estratégias sugeridas
para o desenvolvimento e plena realização
das suas potencialidades. In: Coleções
Biológicas de Apoio ao Inventário, Uso
Sustentável e Conservação da
Biodiversidade. Peixoto, A. L. (ed.). Instituto
de Pesquisas Jardim Botânico do Rio de
Janeiro, Rio de Janeiro, pp. 149-167.
Marroig, G. & Cerqueira, R. 1997. Plio-
Pleistocene South American history and the
Amazon lagoon hypothesis: a piece in the
puzzle of Amazonian diversification. Journal
of Comparative Biology 2: 103-119.
Monsch, K. A. 1998. Miocene fish faunas from
the northwestern Amazonia basin (Colombia,
Peru, Brazil) with evidence of marine
incursions. Paleogeography,
Paleoclimatology, Paleoecology 143: 31-50.
Nelson, G.J. 1984. Identity of the anchovy
Hildebrandichthys setiger with notes on
relationships and biogeography of the genera
Engraulis and Cetengraulis. Copeia 1984:
422-427.
Räsänen, M. E., Linna, A. M., Santos, J. C. R. &
Negri, F. R. 1995. Late Miocene tidal
deposits in the Amazonian foreland basin.
Science 269: 386-389.
Roberts, T. R. 1972. Ecology of fishes in the
Amazon and Congo basins. Bulletin of the
Museum of Comparative Zoology, Harvard
143: 117-147.
Sioli, H. 1964. General features of the limnology
of Amazonia. Verhandlungen der
internationalen Vereinigung für theoretische
und angewandte Limnologie 15: 1053-1058.
Telenius, A. 2011. Biodiversity information goes
public: GBIF at your service. Nordic Journal
of Botany 29: 378-381.
Cavalcanti et al. (2019)
Amazon Basin biodiversity database
© 2019 The Authors
25
Thorson, T.B. 1972. The status of the bull shark,
Carcharhinus leucas, in the Amazon River.
Copeia 1972: 601-605.
Thorson, T.B. 1974. Occurrence of the sawfish,
Pristis perotteti, in the Amazon river, with
notes on P. pectinatus. Copeia 1974: 560-
564.
Webb, S. D. 1995. Biological implications of the
middle Miocene Amazon seaway. Science
269: 361-362.
Wesselingh, F.P. 2006. Miocene long-lived lake
Pebas as a stage of mollusc radiations, with
implications for landscape evolution in
western Amazonia. Scripta Geologica 133: 1-
17.
Wesselingh, F.P.; Räsänen, M.E.; Irion, G.;
Vonhof, H.B.; Kaandorp, R.; Renema, W.;
Romero Pittman, L. & Gingras, M. 2002.
Lake Pebas: a palaeoecological
reconstruction of a Miocene, long-lived lake
complex in western Amazonia. Cainozoic
Research 1: 1-2.
Wesselingh, F. & Salo, J.A. 2006. Miocene
perspective on the evolution of the
Amazonian biota. Scripta Geologica 133:
4
3
9
-
4
5